

CCC Annual Report

UIUC, August 19, 2015

Effect of EMBr on Flow in SEN and Mold

Kai Jin

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Objectives

- Use high resolution LES model to study the effect of SEN submergence depth on the molten steel flow in mold
- Understand the transient molten steel flow and transient effect of double-ruler EMBr
- Investigate the effect of SEN submergence depth on EMBr braking efficiency
- Prepare flow field for inclusion transport and capture studies

Kai Jin

Casting Conditions and Steel Properties

- Baosteel No. 4 caster, 230×1300mm strand
- Slide gate 80% open at V_c = 1.8m/min, steel first entering IR side
- SEN port downward angle 15°, port area 65×83 mm²

Governing Equations For Fluids

• The Navier-Stokes equations in conservation form with LES model

$$\boldsymbol{\nabla} \cdot (\boldsymbol{\rho} \boldsymbol{u}) + \dot{\boldsymbol{s}} = 0$$

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho \left(\boldsymbol{u} \cdot \boldsymbol{\nabla} \right) \boldsymbol{u} = -\boldsymbol{\nabla} \boldsymbol{p} + \boldsymbol{\nabla} \cdot \left[\left(\boldsymbol{\mu} + \boldsymbol{\mu}_{sgs} \right) \left(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^{T} \right) \right] + \boldsymbol{F}_{L}$$

 \dot{s} – Mass sink due to solidifying shell F_L – Source from Lorentz force

• Sub-grid scale - Coherent-Structure Smagorinsky Model^[2] (CSM)

$$\begin{aligned} v_{sgs} &= C_s^2 \left(\Delta x \Delta y \Delta z \right)^{2/3} \sqrt{2S_{ij}S_{ij}} \\ C_s^2 &= C_{csm} \left| Q / E \right|^{3/2} \left(1 - Q / E \right) \\ Q &= 1/2 \left(W_{ij}W_{ij} - S_{ij}S_{ij} \right) \qquad E = 1/2 \left(W_{ij}W_{ij} + S_{ij}S_{ij} \right) \\ W_{ij} &- \text{ vorticity tensor} \qquad S_{ij} - \text{ velocity-strain tensor} \end{aligned}$$
University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Kai Jin · 4

nuous

Computational Domain and Boundary Conditions

Shell Profile and Mass Sink

- Shell thickness $S = Kt^{1/2}$ with $K = 3mm \cdot s^{-1/2}$ (from a breaking shell)
- Mass sink added at some cells
- Cells in shell are solid cells with downward velocity equals V_c and electrical conductivity of 787000 S/m^[1]

Kai Jin

Governing Equations for MHD

- By introducing the electric potential Φ and using Ohm's law, the current density is:

$$\boldsymbol{J} = \boldsymbol{\sigma} (-\boldsymbol{\nabla} \boldsymbol{\Phi} + \boldsymbol{u} \times \boldsymbol{B})$$

• A well conducting material the current conservation law

 $\boldsymbol{\nabla}\cdot\boldsymbol{J}=0$

• Therefore, electric potential satisfies the Poisson equation

$$\nabla \cdot (\sigma \nabla \Phi) = \nabla \cdot [\sigma(\mathbf{u} \times \mathbf{B})]$$

The Lorentz force is obtained from

$$F_L = J \times B$$

• Equations are solved on the entire domain (including the shell) University of Illinois at Urbana-Champaign

List of Simulations and EMBr Profile

- Applied magnetic field **B**, measured by ABB and Baosteel
- Investigate two submergence depth four different EMBr settings

230×1300mm, slide gate 80% open, V _c = 1.8m/min										
	SEN	Тор	Bottom							
	Submergence	Coil	Coil							
	Depth (mm)	Current	Current							
		(A)	(A)							
1	170	0	0							
2	170	0	850							
3	170	400	850							
4	170	850	850							
5	200	0	0							
6	200	0	850							
7	200	400	850							

230×1200mm strand *V_c* = 1.3m/min, gate

70% open area, no EMBr, no argon injection

Addition Validation Case:

University of Illinois at Urbana-Champaign

List of Seven Simulations

Solver and Computational Details

- Multi-GPU finite volume code CUFLOW written in CUDA Fortran
- Fractional step, 2nd order Adams-Bashforth explicit
- Poisson equations are solved by V-cycle multi-grid method with Red-Black Gauss-Seidel SOR
- Domain decomposed onto 6 GPUs (Nvidia K20) on BlueWaters
- Timesteps are taken as ~0.0002s
- 40s LES simulations (16million cells) takes ~2 days to finish
- Multi-Grid using 5 V-Cycle and 6 sweeps on Poisson equations for pressure and 8 V-Cycle and 8 sweeps for electric potential
- Sum or pressure residual reduced to $O(1 \times 10^{-8})$ at each timestep (sum of residuals drops 3 or 4 orders of magnitude)

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Validation – Compare Predicted Velocity with Plant SVC Results

Kai Jin

- SVC^[3] measurement provided by Baosteel: No. 4 caster with 230×1200mm strand and a lower casting speed of 1.3m/min, no EMBr, no argon injection
- LES simulations carried out with the same conditions, *u* velocity (along WF) in the quarter mold center plane and 1cm below top surface are compared with SVC data points

Transient Flow in SEN, Port and Shape of the Jet Exiting Port (Validation Case)

inuous Casting

-0.6

u.

2 1.8

1.6

1.4 1.2

(m/s) Large circulation in SEN bottom causes low pressure in the circulation center and suck in fluid in the mid of port, instantaneous velocity $\boldsymbol{u} = (u_x, u_y, u_z)$

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Kai Jin · 16

Effect of EMBr on Flow (in Port; Time-Averaged; *d_{sub}*=170mm)

- Contour of U_x in middle of port, x = 0.045,
- White line shows where $U_x = 0$
- Increasing *B* leads to:

tinuous Castin

- More flow exiting at bottom of the port
- Area of back flow region at top of port increases
- Size of the swirls in port reduce

• With top coil 850A, only one circulation at port bottom IR side

tinuous

Effect of EMBr on Flow in Mold (Transient; *d_{sub}* = 170mm)

- Contour of velocity magnitude |*u*|
- With EMBr: velocity in mold is reduced; less fluctuations
- Without EMBr, jet travels further to NF. With EMBr, jets only reach quarter mold region
- With EMBr, shedding vortex from jet (at port outlet region) with frequency ~1Hz, those vortex die out quickly

Effect of EMBr on Top Surface Stability and Vortex Motion (*d_{sub}* = 170mm)

- Without EMBr, top surface velocity 0.1~0.45 m/s
- With EMBr, top surface velocity around 0.03~0.07m/s

0 97*tinuous* Casting Consortium

Conclusions

- Swirl exiting SEN depends on casting speed, gate position, and EMBr (in addition to geometry)
- Stronger port swirl with smaller slide gate opening fraction (which also accompanies lower casting speed);
- With no EMBr, strong asymmetric flow inside SEN due to slide gate causes big swirl in port bottom (especially with bottom well), & at port exit
- EMBr makes flow inside SEN more uniform, and even increases downward velocity along NF walls (with strong EMBr)
- EMBr causes tighter faster jet, which exits more towards lower region of port with accompanying larger back-flow in top;
- With EMBr, vortex shedding from upside of jet in the mold at ~1Hz
- With EMBr, jets only penetrates to quarter region of mold; recirculation regions become tighter and closer to jet and new smaller vortices form
- Even with this high casting speed, 1.8m/min: with no argon, EMBr lowers top surface velocity too much (~0.04m/s).

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Acknowledgments

- Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)
- Xiaoming Ruan and Baosteel at Shanghai, China for plant measurements
- Blue Waters / National Center for Supercomputing Applications (NCSA) at UIUC
- National Science Foundation Grant CMMI-11-30882
- NVIDIA for providing the GPUs through the NVIDIA Professor Partnership program

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Kai Jin

24

23

Kai Jin

[1] Ramnik Singh, Brian G. Thomas, and Surya P. Vanka, "Large Eddy Simulations of Double-Ruler Electromagnetic Field Effect on Transient Flow during Continuous Casting," Metall. Mater. Trans. B, 2014, vol. 45, pp. 1098–1115.

[2] Hiromichi Kobayashi, "The Subgrid-Scale Models Based on Coherent Structures for Rotating Homogeneous Turbulence and Turbulent Channel Flow," Phys. Fluids 1994-Present, 2005, vol. 17, p. 045104.

[3] Rui Liu, J Sengupta, D Crosbie, S Chung, M Trinh, and B. G Thomas: in Sens. Sampl. Simul. Process Control, "Measurement of Molten Steel Surface Velocity with SVC and Nail Dipping during Continuous Casting Process," John Wiley & Sons, San Diego, 2011.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Kai Jin	•	25