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Objectives

• Use high resolution LES model to study the 
effect of SEN submergence depth on the 
molten steel flow in mold

• Understand the transient molten steel flow 
and transient effect of double-ruler EMBr

• Investigate the effect of SEN submergence 
depth on EMBr braking efficiency

• Prepare flow field for inclusion transport and 
capture studies
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Casting Conditions and Steel Properties

• Baosteel No. 4 caster, 230×1300mm strand

• Slide gate 80% open at Vc = 1.8m/min, steel first entering IR side

• SEN port downward angle 15º, port area 65×83 mm2

Properties of Molten Steel

Density ρl (kg/m3) 7000

Dynamic Viscosity μl (kg/m-s) 0.0063

Electrical Conductivity σ (S/m) 714000[1]

Magnetic Permeability (h/m) 1.26×10-6

Schematic of slide gate configuration

Note: solid shell conductivity taken as 
787000 S/m [1]
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Governing Equations For Fluids

• The Navier-Stokes equations in conservation form with LES model

ṡ – Mass sink due to solidifying shell
FL – Source from Lorentz force

• Sub-grid scale - Coherent-Structure Smagorinsky Model[2] (CSM)

Wij – vorticity tensor                Sij – velocity-strain tensor
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Computational Domain and 
Boundary Conditions

• Domain slide gate, SEN, mold region

• Cartesian grid ~16 million cells, 
hexahedral with edge length ~4mm

• Solid shells included 

• Boundary Conditions

– velocity inlet, 1.66m/s

– top surface, no slid wall

– shell-molten steel interface, moving 
wall 0.03m/s with mass sink

– outside of shell insulated wall

– outlet, zero derivative velocity

~2.8m
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Shell Profile and Mass Sink

• Shell thickness S = Kt1/2 with K = 3mm·s-1/2 (from a breaking shell)

• Mass sink added at some cells

• Cells in shell are solid cells with 
downward velocity equals Vc and 
electrical conductivity of 787000 S/m[1]
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Governing Equations for MHD

• By introducing the electric potential Φ and using Ohm’s law, the 
current density is:

• A well conducting material the current conservation law

• Therefore, electric potential satisfies the Poisson equation

• The Lorentz force is obtained from 

• Equations are solved on the entire domain (including the shell)

( )σ= − Φ + ×J u B∇

0⋅ =J∇

( ) ( )σ σ⋅ ∇Φ = ⋅ ×  u B∇ ∇

L = ×F J B
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List of Simulations and EMBr Profile

• Applied magnetic field B, measured by ABB and Baosteel

• Investigate two submergence depth four different EMBr settings

SEN 
Submergence 
Depth (mm)

Top
Coil 

Current
(A)

Bottom 
Coil 

Current
(A)

1 170 0 0
2 170 0 850
3 170 400 850
4 170 850 850
5 200 0 0
6 200 0 850
7 200 400 850

List of Seven Simulations
(230×1300mm, slide gate 80% open, Vc = 1.8m/min)

Magnetic Field Profile

Addition Validation Case:
230×1200mm strand Vc = 1.3m/min, gate 
70% open area, no EMBr, no argon injection
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Solver and Computational Details

• Multi-GPU finite volume code CUFLOW written in CUDA Fortran

• Fractional step, 2nd order Adams-Bashforth explicit

• Poisson equations are solved by V-cycle multi-grid method with 
Red-Black Gauss-Seidel SOR 

• Domain decomposed onto 6 GPUs (Nvidia K20) on BlueWaters

• Timesteps are taken as ~0.0002s 

• 40s LES simulations (16million cells) takes ~2 days to finish

• Multi-Grid using 5 V-Cycle and 6 sweeps on Poisson equations 
for pressure and 8 V-Cycle and 8 sweeps for electric potential

• Sum or pressure residual reduced to O(1×10-8) at each timestep
(sum of residuals drops 3 or 4 orders of magnitude)
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Validation – Compare Predicted 
Velocity with Plant SVC Results

• SVC[3] measurement provided by Baosteel: No. 4 caster with 
230×1200mm strand and a lower casting speed of 1.3m/min, no 
EMBr, no argon injection

• LES simulations carried out with the same conditions, u velocity 
(along WF) in the quarter mold center plane and 1cm below top 
surface are compared with SVC data points

Schematic of SVC measurements Compare u velocity from LES with SVC
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Mean Velocity (Validation Case)
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• Back flow - reversal going into the port (towards inside SEN)

• A big swirl at bottom of SEN
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Transient Flow in SEN, Port and Shape of 
the Jet Exiting Port (Validation Case)

Large circulation in SEN bottom causes low pressure in the 
circulation center and suck in fluid in the mid of port, 
instantaneous velocity u = (ux , uy , uz)
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Flow Rotation at SEN Bottom and Top 
Surface Velocity (Validation Case)

SEN bottom, three different 
rotations (identified by color)
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Swirls at SEN Bottom and Top 
Surface Velocity (without EMBr)

• 230×1300mm strand, Vc = 1.8m/min, submergence depth dsub of 
170mm and 200mm, No EMBr two circulations at SEN bottom
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Flow in Port (without EMBr)
Submergence depth 170 and 200mm

• At x=-0.045

• Negative ux  flow exiting port into mold
Positive ux  backflow

• White lines show where ux = 0

• Backflow at top 1/4 – 1/3 region 
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Effect of Submergence Depth on Flow in 
Top Surface and Mold

Time-averaged (Without EMBr)
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• Contour of |U| in middle plane and on top surface (1cm below)
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Effect of EMBr (in SEN Centerplane
Time-averaged; dsub = 170mm)

• Contour of w velocity in SEN
• Size of the recirculation region 

(below slide gate) is not affected
• Length of the jet is reduced
• With EMBr Bottom swirl size is 

reduced; with top coil 850A 
bottom only shows one swirl

• With EMBr, pressure p (modified 
static pressure) drop in SEN is 
increased
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Effect of EMBr on Flow (in Port; 
Time-Averaged; dsub=170mm)

• Contour of Ux in middle of port, x = - 0.045, 
• White line shows where Ux = 0
• Increasing B leads to:

– More flow exiting at bottom of the port
– Area of back flow region at top of port increases
– Size of the swirls in port reduce

• With top coil 850A, only one circulation at port bottom IR side
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Effect of EMBr on Swirl at SEN Bottom and Mold 
Top Surface Velocity (Transient; dsub=170mm)

• Rotation at bottom of SEN
• With EMBr, flow velocity on 

top surface is too small 
(~0.05m/s)
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Effect of EMBr on Flow in Mold
(Time Averaged; dsub=170mm)

• Nozzle flow – EMBr makes flow inside SEN more uniform, with strong 
EMBr increases downward velocity along NF walls in SEN (M-shape 
profile, only seen in front view, perpendicular to field)

• With EMBr, jets are flatter and stronger, circulations close to jets
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Effect of EMBr on Flow in Mold
(Transient; dsub = 170mm)

• Contour of velocity magnitude |u|
• With EMBr: velocity in mold is reduced; less fluctuations

• Without EMBr, jet travels further to NF. With EMBr, jets only reach 
quarter mold region

• With EMBr, shedding vortex from jet (at port outlet region) with 
frequency ~1Hz, those vortex die out quickly 

x (m/s) x (m/s)

z
(m/s)

2 m/s 2 m/s
|u|

(m/s)
|u|

(m/s)

Animation Animation
Top coil 400A and   Bottom coil 850ANo EMBr

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kai Jin • 22

Effect of EMBr on Top Surface Stability 
and Vortex Motion (dsub = 170mm)

• Without EMBr, top surface velocity 0.1~0.45 m/s

• With EMBr, top surface velocity around 0.03~0.07m/s

• EMBr reduces vortex on 
top surface, more stable

x

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.1

0

0.1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.1

0

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

No 
EMBr

x

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.1

0

0.1

x

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.1

0

0.1

B850A

T400A
B850A

T850A
B850A

|U| 
(m/s)

|U| 
(m/s)

1m/s

1m/s

OR

OR

0.5 m/s

x (m)

y
(m)

y
(m)

OR

OR

Animation

Animation
Top coil 400A and Bottom coil 850A

No EMBr



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kai Jin • 23

Conclusions

• Swirl exiting SEN depends on casting speed, gate position, and EMBr (in 
addition to geometry) 

• Stronger port swirl with smaller slide gate opening fraction (which also 
accompanies lower casting speed);

• With no EMBr, strong asymmetric flow inside SEN due to slide gate 
causes big swirl in port bottom (especially with bottom well), & at port exit

• EMBr makes flow inside SEN more uniform, and even increases 
downward velocity along NF walls (with strong EMBr)

• EMBr causes tighter faster jet, which exits more towards lower region of 
port with accompanying larger back-flow in top;

• With EMBr, vortex shedding from upside of jet in the mold at ~1Hz

• With EMBr, jets only penetrates to quarter region of mold; recirculation 
regions become tighter and closer to jet and new smaller vortices form

• Even with this high casting speed, 1.8m/min: with no argon, EMBr lowers 
top surface velocity too much (~0.04m/s).
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